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Abstract

Using infrared detectors, Zehnder and Rosakis,[] Zehnder and Kallivayalil[2] and Mason

and Rosakis,[3] have recorded the temperature field around a dynamically propagating crack

tip in several metals. At the same time, Tzou[4,5] has suggested that the temperature field

around a propagating crack tip might exhibit some of the characteristics of hyperbolic heat

conduction. In this paper it is shown, by using a corrected solution of the hyperbolic heat

conduction equation for a traveling point source and by using an experimental estimate of

the active plastic zone (heat generating zone) at a crack tip, that the effects of hyperbolic heat

conduction around a propagating crack tip are not observed for the conditions of the experiments.

It is shown that due to the adiabatic conditions at the crack tip the solution of the hyperbolic

heat equation is indistinguishable from the solution of the parabolic heat conduction equation

for crack propagation in steel. Some features of the solution are examined for conditions other

than those in the experiments.
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1. Introduction

It is understood that the classical, or parabolic, heat conduction equation has an inherent

pathology. That is, when a point source is introduced into a conducting medium, the parabolic

heat conduction equation predicts that its presence is instantaneously felt throughout the medium.

Often this pathology is referred to as "the infinite speed of heat propagation," and it has been

addressed[6] through the introduction of a new heat flux law. Usually, heat flux, q, is related

to the gradient of temperature by Fourier's Law,

q = -kVT.

When this relation is combined with the expression for the continuity of energy,

-7 .q + S = pcpT,

where the dot refers to time differentiation, the parabolic heat conduction equation results,

aV 2T - = -- S (I.
PCp

(In this paper temperature, T, is implicitly taken as the change in temperature above ambient,

T = T&ctu&l - Tambient.) If, instead of Fourier's Law, a new heat flux law is used,

2q + q = -kVT,

then through similar manipulations the "hyperbolic" heat conduction equation results,

__ -(s + --) (1.2)V 2  PCP t 2  '

The introduction of the new heat conduction law has been justified by several authors, (for a

review see Tzou[4]) and some experimental work has shown that this different heat conduction

equation is more appropriate at large distances from a point source or at very short times after

the introduction of a point source.[7] An estimate for the speed of heat propagation in materials,

v, may be found,J8] and for steel this estimate predicts a speed of heat propagation on the order

of 10 m/s.



Zehnder and Rosakis[l] and Mason and Rosa' is[3] have measured the temperature at the

tip of a dynamically propagating crack for crack tip velocities ranging from 600 to 900 m/s

in 4340 steel. The temperature fields show a strong difference in their geometric nature, see

Figure 1, and, since these velocities are comparable to the estimate for the wave speed of heat

propagation, it is suggested that this difference may be due to hyperbolic heat conduction. In

order to determine whether hyperbolic heat conduction is active in these experiments, it is the

purpose of this investigation to produce theoretical temperature fields for the problem of a crack

propagating in a hyperbolically conducting metal. It is fundamentally important to note that the

propagation of a crack produces plastic deformation at the crack tip and that the plastic work

generated during this deformation is mostly transformed into heat. Therefore, the problem of

calculating the temperature field around a propagating crack tip is more correctly stated as the

problem of calculating the temperature field around a propagating heat source zone with careful

attention paid to the boundary conditions at the crack faces.

Several investigations of the temperature field around a propagating crack have been re-

ported for parabolic heat conduction. (For a complete review of this field of work see Mason and

Rosakis[31.) The most pertinent here is the work of Weichert and Schonert.[9] These authors nu-

merically calculated the temperature fields around propagating heat source zones by integrating

the solution of the parabolic heat conduction equation for a travelling point source over a rect-

angular heat source zone of constant magnitude. A similar methodology is used here. It should

be noted that in all theoretical investigations of the temperature field around a propagating crack

tip the assumptions made about the plastic work zone and, consequently, the heat source zone

have proven to be extremely important in the calculation of maximum temperature. Due to the

complexity of the three dimensional deformation where temperature measurements are performed

(at the surface of the specimen), it is difficult to accurately describe the plastic work zone in

closed form and most assumptions result in an oversimplification of the experimental problem.

Consequently, in this work the shape of the plastic work zone is estimated from the experiments

of Zehnder and Rosakis[1] and Mason and Rosakisl3] directly, eliminating over-simplification

and, thus, more closely approximating the experimental data.

2. Theoretical Development

First it is necessary to find the solution of the hyperbolic heat conduction equation for a



point source travelling at constant velocity. Although earlier attempts to provide solutions of Eq

(1.2) for a traveling point source exist,[ 10,111 the solution given here includes some corrections

that significantly alter the behavior of the solution.

We are interested in solving the equation,

V.2T-- =- S(],- it.-Z2)+-, -6t, Z2) (2.1)
V2  a PCpI aIs

for a point source travelling at a constant velocity, i,, in the z1 direction, i.e.

S(z] - at,Z 2) - 6(:] - &i)6(:2 ).

Substituting for S(z - it, Z2 ), Eq (2.1) becomes:

V2-Tt - 6_IT:+1 ( (:2) + (Z2)] (2.2)t'2 a p c p O 1 1 t

It may be shown that the solution of this equation depends upon 312, where Al = &/v, and that

this dependence may be divided into three regimes, 32 < 1, 3 2 
- 1 and M 2 > 1. The former

and latter cases will be addressed here.

2.1 For the case M 2 < 1

By employing the transformation,

= -1t

-- 112 ,

equation (2.2) may be expressed as

V2 T+ a 8T

VAI -- M 2  _ _I[ ] "II -C,.11 2  Ob(& V1 -AI (2) .3()
PC ( V, J .2 )W(2) - v,/7 --l 2¢ o ,

We guess a solution to Eq (2.3) of the form

Tp,(f, W = xp [-,,i f (6,, W (2.4)

where
h

N'--
K=

2aV/1 -f2



which when inserted in equation (2.3) yields

{ - ,/lM 0( I -M2)}.M2 2

V(f _-c 2 f e [<] '(f6 VI/jT2) W 2 )-6 ' )
PCpat -O( ) .

(2.5)

The left hand side of Eq (2.5) is the modified Helmholtz equation. The Green's function solution

of this equation is given by Arfken,112]

G(rr') Ko( r ) (2.6)
2 )

where Ko(w) is the zeroth order modified Bessel's function of the second kind and

jr - r I = -%/( ) - (I )' + ( 2 - (2) .

The first vector, r refers to the point of interest while the second vector, r , refers to the

location of the point source. Using the Green's function for the modified Helmholtz equation,

the solution to equation (2.5) may be found,

f(I, )-- 1 A Ko(Kjr4 - rl)exlp [< 1 16((, V/f - .i 2 M(2 )dC, d( 22ir pcp Cr

2 , a 2  KIi)(KJr - r )exp [-]] 0(I ¢ i0- )((2)d ]d(2.
27rpc~c a, &V1-J2A19

(2.7)

Equation (2.7) may be divided into two integrals

1
f (6, 2) = -- (.,(f- 2) + J2(f, 2)) (2.8)27rp(-,,

The first of these integrals is found using the fundamental property of the Dirac delta function,

K0( h = r ) (2.9)

and the second may be found using the relation

ail - O- l 16=0,6,=0

i.e.
J2(6,6' ) All I()(jr~j)_+ L" I ( lr l)  (2.10)

J2 (1,~) -2(1 -A1 2 )3 72 jiKrI(1



Substituting Eqs (2.9) and (2.10) into Eq (2.8) gives the result

f( 1 ,c2) == 47rpc(1-A 2 )3 / 2  (2- .1 2 )Ko(KI r ) + . .- j(K cr1f) (2.11)

Remembering our intial guess for temperature in Eq (2.4), we arrive at the solution to Eq (2.3),

Tp(l,G) = 4 (1- tic)3/exp[- (2 - AP)Ko(K Ir) +

(2.12)

where
Ir I = + 2

This is the solution for hyperbolic two dimensional heat flow around a point source traveling

in a straight line at a constant speed, 6 < v, in an infinite body with T = 0 as r --+ oo.

As M 2 -+ 0 this function gives the solution of Carslaw and Jaeger[131 for a traveling point

source in a parabolically conducting material under identical boundary conditions. This solution

differs from the solution provided by Tzou 110,111 due to the interpretation of the argument of

the modified Bessel's function in Eq (2.6). In the work by Tzou, it appears that the argument

of the modified Bessel's function had been interpreted as the difference of the magnitudes of

two vectors where it is actually the magnitude of the difference of two vectors. The additional

multiplier of the second term, l /Irj 1, provides desirable behavior for the point source solution

not found in the expressions provided by 1 zou. Note that using the transformation of coordinates

in Eq (2.1) yields

V~+ a T 1- [-- aM 2  O ( 1TT ~)
V2 T + 9 -/ - [S (,,12.Vr - ,1

(2.13)

and that if the slope of the source zone, S((1 VT P - , I2 ), is negative in the cl direction there

is a heating contribution due to the second forcing term; if the slope of the source zone in the

cl direction is positive, there is a cooling contribution. The slope of a Dirac delta function in

the cl direction is negative infinite for positive c, and positive infinite for cl less that zero.[14]

Consequently, it is expected that there should be a heating contribution ahead of the point source

that transforms to a cooling contribution behind the point source. The c1/Ir~l term changes the

sign of the second term in the solution to produce this behavior.

On the crack faces it is expected that the heat flux out of the material is zero, that is,

q2=0I fore2 =0 + andS 1 
< 0 ;

for c2 = 0- and fi < 0. (2.14)



Naturally, this is an idealization of the actual boundary condition which would involve radiation

transfer, convective transfer etc. However, it is clear that a fixed temperature over the entire

crack faces is not an appropriate boundary condition and is not included in this analysis. In

parabolic heat conduction, symmetry of the temperature solution about the x, axis is sufficient

to satisfy the boundary condition at the crack faces given by Eq (2.14),

e9OT-k = q2(C,0) = 0.

However, for hyperbolic heat conduction the symmetry results in a first order differential equa-

tion, namely,

-ba 
N 2  

+)
2 \/'l __

.A12 , q2( O) = 0

It is obvious from Eq (2.14) that '12 = 0 is the solution to this equation. However, it is also

clear that the possibility exists for other flow conditions to be prescribed on the crack faces if

boundary conditions other than Eq (2.14) exist. In hyperbolic heat conduction symmetry about

the j axes does not, by itself, imply that q2 is identically zero on the fi axis.

2.2 For the case Al 2 > 1

By employing the transformation,

=) - if
v/' 2 - 1,

Eq (2.2) may be refcrmulated as

a 2 T 8 2 T o OT
_5 2 2 -0 +  XI/2- 1 a

PCP 
j, V/-1 

-2 
1 af- (2.15)

We guess a solution to Eq (2.15) of the form

T p( , , CX) = fx;[-' f 6 . 2 (2 .16 )

where
itK' 0.d'~



and substitute above resulting in

2f 2f f

1 {2f2 a6(6 V/M2-) (2.17)

- exp[- i (I /i 2 -1)6( 2)- 6(
2  

1 )

The left hand side of this equation is the telegraph equation. The Green's function for this

equation may be found in Duff and Naylori 151

G(r ,r() = IO(K-rt - r'I)H(Irl - rC12)H((, - fi) (2.18)

where I0 is the zeroth order modified Bessel function of the first kind, H(x) is the Heaviside

function and
Ir ~ ~ -r'I=v( 2 - ( 2 - (2 )2 .

Because of the Heaviside terms, the solution in Eq (2.18) is zero outside a triangular regime

behind the point source. There exists another Green's function that is non-zero ahead of the

point source, but this function is not used due to obvious physical arguments. Because the point

source is travelling faster than the wave speed of heat propagation in the material, it is physically

impossible to have a finite temperature ahead of the point source. Also, due to the Heaviside

terms, the temperature exhibits a jump or shock along lines inclined at an angle w to the negative

axis. The shock angle, w, is given by the familiar formula,

W = +siil(1/M). (2.19)

Not surprisingly, these thermal shocks are quite similar to the shocks found in super-sonic fluid

flow. This is to be expected since Eq (1.2) is, in fact, the damped wave equation.

Convolution of the Green's function for the telegraph equation with the forcing term in

Eq (2.15) results in two integrals. As before, the first of these integrals is found using the

fundamental property of the Dirac delta function,

J ,)- Io(hlrtl) ,H(l 12)H (- )

VJ.4 2 - 1

The second integral is found using the additional relation b(x - c)6(x) = 0,

J2(,6 = A1' 2  {IO(K~rI)+ -L II(KrI)} H(Jr(12)H(-C,).J2( 1, 2)- ---(AI2 - 1)3/2 1 t("r l Irl I



Combining these two gives the result

f(1, 2) =4pcpc(M 2  1)A/2 {(M - 2)Io(ihjr1 I) -A12j 6 j(tjr~I) H(IJrJ 2 )H(-fi).

Remembering our intial guess for temperature in Eq (2.16), we arrive at the final result,

1
Tp(6, 62) = pp(M 1 ) x [t;6]

p O( Af 2 - )3/2 l[ J (2.20)

(Al 2 - 2)Io(,irl) - .i2, Ii (,Jrtj) H(IrYI2)H(- i).
I Ir$I

This is the solution of Eq (2.3) for a point source travelling at constant velocity with M 2 > 1.

It differs significantly from the solution reported by Tzou[10, 11] due to the use of the correct

Green's function solution for the telegraph equation. It must be re-emphasized that the definition

of the argument of the modified Bessel's functions, Ir I, is significantly different in this case than

in the previous case, and, furthermore, that the sign of the argument of the leading exponential

term has changed. Although the two solutions appear similar, they are, in fact, not very similar

at all; for example, this solution does not converge to the solution of Carslaw and Jaeger[131

under any circumstances. Note the effect of the cooling term in the forcing function on the

right hand side of equation (2.15), when .1P < 2 the temperature at the location of the point

source is negative due to the fact that I,(w) --+ 0 as v ---+ 0 while 10'(w) --+ 1 as w -* 0. If

the cooling term in the forcing function of Eq (2.15) were neglected this effect would not be

observed. When M2 > 2, the solution is always positive.

2.3 Integration over the Source Zone

For the sake of simplicity the heat source zone, S( ,. ), has been assumed to be defined

only on the rectangle j E [0, 6/v/ - .f ] and 2 E [-.fb, f 6] where f is the aspect ratio of the

zone; elsewhere it is identically zero. From the experimental work of Zehnder and Rosakis[l]

and Mason and Rosakis[3] it is seen that a close approximation to the experimental heat source

zone is given by

Q - - -Cos 2 l+ Cos.



where f = 0.05. A comparison of the approximate plastic zone, S( 1, 2), with the experimen-

tally estimated plastic zone is shown in Figure 2 for both testing conditions . The inclusion

of 1/2f in the denominator gives this function characteristics of a Dirac delta function in the

6 (or X2, given below) direction as f -- 0. Consequently, this function is also normalized so

that its integral in two dimensions is unity giving usable results if f is allowed to be zero. The

multiplier, Q, is found experimentally from the maximum value of the work rate density and

the relation between Q and the maximum of the function,

Q = .*fQ

Once this relation for the heat source zone has been assumed, letting

S= V/1 - _

2(2.21)

1"2 ' 2

the temperature field due to the heat source zone ahead of a crack tip may be found by a

convolution;

T(x, I.X2) = Q62 TAX X ,,2 - 2)d(f2d(,,--I Q

or, more specifically, for ,l2 < 1

Q62

T(xl,,X2) 
Q6

47rpcp0(1 - Al 2 )3/ 2

f If S(K1 . 2 ) 1-.w(t ] (2.22a)

Jo I ~ , ti - 1j
( 11,2 , f) ,rx - r I) + A 'I 1 0.- -irX ) d(2d(,.

(2-1 - 2 Ir - rJ1I 1 - .1 2

where
i6

2n (2.22b)
r ' & 1~ x ( , -< )2 + 2 -:l )(X2 (2 )2

Normalizing temperature with respect to Qb/pc, b for numerical integration yields

Vh_ I,,f S(6',(2)exp - (Iff)
O(XIX20 =- .T(. 1 ,X 2 ) = Ir(1 - / . f S(1 -Chi

_~112  p, 123/ " I(I 2Q- 2r(I - M1 -f Q I. (2.23a)

-,r
x - ri (.r -r4 ) 1 l d(2d(.

(2 - A12)K 0( 1 32 ) + AI2 r" - r) ( 1 - AI



Similarly for M 2 > 1

O(x 1 ,x 2 ) = 2(M 2 - 1)3/2 j'jf f ( e w"x 1 ]
(-.A 2  _ 2)Io ( Ir ' ) -r.1 ( (

2  1 2.24b)

H(Irx - rI 2 )H(-.rj + (I).d(2dA) 

Numerical integration of the solution for .f12 < 1 proceeds without avail. The singularity

in the modified Bessel's function of the zeroth order at the origin is logarithmic, therefore

the integral is finite. The singularity in the modified Bessel's function of the first order at

the same point is of order 1/Irx - r(I which is integrable in two dimensions. (This is easily

shown by a conversion to polar coordinates.) Multiplication of KI(V,rx - r;I) by the factor

(xi - (I)/Irx - r(I does not change the order of the singularity of this term since at (xl - ) =

(x2-(2) = 0 this term is finite. For Al 2 > 1, the integration is quite simple. Since both modified

Bessel functions of the first kind are finite at the origin, the only singularity occurs in the second

term and this remains integrable. (This is easily shown using polar coordinates.)

The convolution, Eq (2 .22a), is evaluated numerically for ,' E 1.01, 1, 100] and M 2 E

[0,.5,.9, 100, 101]. The modified Bessel's functions are evaluated either by using IMSL sub-

routines for small arguments or by using the asymptotic expressions given below for larger

arguments. To find the value of the integral a two dimensional Gauss-Legendre scheme is

employed. The number of integration points increased with the value of 4'.

2.4 Asymptotic Analysis of the Integration

By employing the transform

--2

in Eqs (1.1) and (1.2) the following expressions are found;

- T = --- S (2.25a)
20x Ox bPCP

and

V2T - 2  + -2 T O S-_-2 , (2.25b)
2T1 X + P



respectively. Note that as the parameter i,' gets large the left hand sides of both equations become

more adiabatic and that the solution to the adiabatic equation is given simply as;

S(I + cos(zrI)) for x <0 and x 2 E [-ffA,

0 8 (XIX 2 ) -( + cos(7r)) (1 - x, + -sin(2irxi)) for r O E [0,11, X2 E [-ffl.

0 otherwise.
(2.26)

where the temperature has been normalized by Q6/pc?,b. From the definition of ', it is seen that

one of three things may be occurring when v., - oc: o --+ 0, 6 --+ oo or 6 ---+ oo. In Eqs (2.25a)

and (2.25b) as t -, o the left hand side becomes the adiabatic equation, but, depending upon

how i, is increasing, through n, i or 6, the right hand side may be affected as well. Normalizing

the the temperature with respect to Qb/pc,,i in Eq. (2.24b) removes this ambiguity in the limit,

and, thus, the point source term in the integrand of Eq (2.24b) rather than Eq (2.22a) is examined

asymptotically for M 2 < 1.

For large arguments the modified Bessel's functions can be approximated by

1 9
C()-" - uexp[-w] -8 + 1+

!v 2
K0 ") S. 12i "'" (2.27)

Kt (u') - - exp[ ] + 3 1 +

2w +Sw - 128u 2 '

Using only the first terms, the point source in the integrand for 3j2 < 1, Eq (2.24b), can be

rewritten as

t' I - trx 11 + jrx) 2 A2 + M 2  (2.28)
2r(1 -M 2 ) ex 2 jrxIJ

where

Ir X = /.r + (1 112 )X.22

Given that for small X2 /.rI

exp [ 'rI] ex [ 1 exp [L ( , (2.29)ep 1-.,21r ex X1'7 \ ,



Eq (2.28) may be expanded to take the following form,

Op(xI,x 2 )"2r(1 exP [ I + Ix 1) exp [(
2 - 112 + sgn(a'i )12

[2sgn(x.) -(1 1 21)+ (2- 11'2 + sgn(xI )_1 2 )(1 - M 2 )] (X2 ) 2

4~ !1

When x, > 0 the exponential term exp [-i"(r + .,j. 1)/(1 - _12)] dominates the solution and

Tp(x 1,x 2 ) -, 0; on the other hand, when x1 < 0, (.rI + fx1l) = 0, the same exponential term

disappears and sgn(xj ) is always negative. Thus,

t )(x_,x2 ) _L _ I. ,, {1I (,I,2 A 2  + forx < (2.30)

t0 for x, >0

It is clear that, as V//21xlI becomes large, the second term in the expansion becomes negligible

and the solution becomes independent of 111 Consequently, the solution for the hyperbolic heat

conduction equation and the solution for the parabolic heat conduction equation converge to the

same result. It is also clear that as '!,/21.n I ,- c, o,(X] jX2) becomes, as expected from the

adiabatic solution, a Dirac delta function[ 121 in .,. However, contrary to the solution for the

adiabatic equation and in keeping with the boundary condition T --4 oc as r' --- oc, the function

in Eq (2.30) loses its Dirac delta function character as Ia I grows.

Not surprisingly, similar results are found for the case 3f2 > 1. Asymptotic analysis using

the approximations

I,( ) .-.

I (w.,) .. .i.p[i.,]

and following the same steps outlined above leads to the same leading term characterization of

the solution as for the case A1 2 < 1. Since the governing equation becomes adiabatic as the

approximation becomes more accurate it is to be expected that both solutions converge to the

same result as they do.



3. Results and Discussion

The solution for the simplest case, the adiabatic case in Eq (2.26), is shown in Figure

3. Behind the heat source zone the adiabatic solution is characterized by contours of constant

temperature extending from the heat source zone to x1 = -o parallel to the crack faces. In

front of the crack tip, in the heat source zone, the gradient of temperature along lines extending

radially from the crack tip appears to be constant. Although it isn't true mathematically that the

radial gradient in the heat source zone is constant, it is noted that the expression for the zone used

here is an approximation to the experimental data and that "averaging"in the experiments due to

the finite infrared detector size reduces the accuracy of the measurements near the crack tip.[2]

Generally, it is expected that if adiabatic conditions prevail at the crack tip, a nearly constant

radial gradient may be recorded experimentally. Good quantitative agreement is found between

the predicted temperature rise and the measured temperature rise. A maximum temperature rise

of 298°C is seen in the experiment when I =6(X) m/s, and the predicted result, 304°C occurring

along the crack line, is very close to that measurement. The minimum temperature is 0°C

occurring everywhere outside-except directly behind-the heat source zone.

The results of the numerical integration for the -All < 1 cases are plotted in Figures 4

through 6. For small V, it can be seen in Figure 4 that there is a marked dependence of the

temperature field upon M2 . Most notably, for -1 2 E [.5..9] a region of temperature drop is

seen behind the source zone. This is an interesting but unrealistic effect since the combination

of parameters in these plots, i, = .01 and M'2 E [.5..9], is unlikely to be seen experimentally.

As M 2 -+ 1 the temperature field becomes more localized near the origin and the temperature

at any given point behind the heat source zone decreases with increasing M2 . For A12 = 0 the

maximum normalized temperature, G,,,, occurs roughly at the maximum of the heat source zone

and is equal to .1% of the adiabatic maximum. The minimum, naturally, is zero as r - oo. For

M 2 = .5 the maximum is moved forward to roughly the location of the minimum slope of the

source zone where 0,., is equal to 1% of the adiabatic maximum. The minimum occurs roughly

at the location of the maximum slope of the source zone where the normalized temperature is

equal to -1% of the maximum adiabatic temperature. For the case . "2 = .9 the location of the

maximum and minimum are not changed with respect to the case Af2 = .5 but the magnitude

does, emax is equal to 10% of the adiabatic maximum while 9),, is equal to -10% of the

adiabatic maximum. The behavior seen for the two cases when M 2 # 0 is exactly as expected



from Eqs (2.13) and (2.12). When M12 54 0 there is a contribution due to the slope of the heat

source zone as seen in Eq (2.13). This contribution has a cooling effect when the slope is a

maximum and a heat effect when the slope is a minimum; as Al --+ 1 the significance of the

heating and cooling due to the modified Bessel's function of the first order becomes greater

and more dominant. Thus, as Al2 -- , 1, the maximum temperature moves to the location of

minimum slope and the minimum temperature moves to the location of the maximum slope.

Both maximum and minimum increase in magnitude as :,If2 _ 1.

For larger V,, Figure 5, the dependence of the temperature field upon Al 2 begins to disappear.

No negative temperature changes are seen, however, when Al2 = .9 the temperature does exhibit

a positive minimum near the tail end of the heat source zone. Thus, some cooling effects due to

the second source term in Eq (2.13) remain. Although, far from the heat source zone, xl/6 > 1,

all three fields are equal. As 312 -- ) a localization of the temperature near the source zone

is still seen. The maximum temperature is located near the maximum of the source function in

each sub-case although it moves forward slightly as the thermal mach number increases. The

maximum normalized temperature increases with thermal mach number; 0rnaz = .75, 1, 1.5 for
M 2 = 0, .5, .9 respectively. These values are 3.25%, 5% and 7.5% of the maximum temperature

under adiabatic conditions.

For even larger V/,, Figure 6, the dependence upon M11 disappears completely as expected

from the asymptotic analysis, Eq (2.30), and the hyperbolic heat conduction solution is indis-

tinguishable from the solution for parabolic heat conduction at all values of M 2 < 1. No

localization of the temperature near the heat source zone is discernable. The maximum temper-

ature occurs slightly behind the maximum of the heat source zone with value of 7.5-32.5% of

the maximum temperature under adiabatic conditions.

Small V, accounts for, a small source zone, 6, low velocity, it, or a large thermal diffusivity,

a. (See Eq (2.22b).) For metals these conditions do not reflect the usual experimental conditions.

For 4340 steel, a = 10- , and ii6 ; 2 for both experiments shown in Figure 1 giving , ,- 105 in

both cases. For comparison the results of the integration for V, = 105 have been plotted in Figure

7. It is seen that the theoretical temperature field matches the experimental results, Figure 1, well

for 6 = 600 m/s and that both the theoretical temperature field and the experimental temperature

field resemble the adiabatic solution, Figure 3. Contours extend from the heat source zone nearly

parallel to the crack faces toward x1 = -oc before curving in to meet the negative x, axis.



The results for V) = 101 differ from the adiabatic solution in that the temperature decreases as

1xI increases behind the heat source zone. It is reiterated that this decrease is expected due to

the zero temperature boundary condition at IxII = . This boundary condition more closely

approximates the experimental condition than an adiabatic boundary condition because there is,

after all, a small but significant amount of heat conduction leading to a cooling of the specimen

as IxI - oo. It is noted that the temperature decreases more rapidly behind the crack tip in

the experiments than in the theory. This is attributed to heat loss by radiation and convection

at the surface. Kuang and Alturi[16] have included these effects in there numerical parabolic

heat conduction analysis, and they report a more rapid decrease in the temperature behind the

crack than when radiation and convection are not neglected. For & = 900 m/s in Figure 1 a

discrepancy with the theoretical results for .! 2 < 1 in Figure 7 is seen. The contours seen

experimentally emanate from the source zone outwardly before curving in to meet the negative

x, axis. (The predicted maximum temperature at the crack tip is in good agreement with the

experimental measurement, however, owing to the adiabatic conditions at the crack tip.)

For M 2 > 1 an exemplary plot is shown in Figure 8. The resemblance of this figure to

the results recorded in Fig I for h = 900 m/s is striking, however, the experimental temperature

field for i = 900 m/s shows what might be interpreted to be thermal shocks at a shock angle

corresponding to a large mach number, Al - 100. If this value for Al is accurate then when

it = 600 m/s the temperature field should also show similar thermal shocks; it doesn't. Also,

because V, = 10 experimentally not 101 as in Fig 8, the theoretical temperature field for

thermally super-sonic crack propagation at h = 900 m/s actually resembles the temperature field

in Fig 7. This is expected from the asymptotic analysis and has been checked numerically by

the authors. Therefore, it is clear that no evidence of thermally super-sonic crack propagation is

observed in these experiments.

The difference in between the experimentally observed temperature field at & =900 m/s

and the predicted field at the same crack speed is due to crack face opening[3]. The opening

velocity required to produce the observed effect is 7.5 m/s, a reasonable crack opening velocity.

It is expected that the crack face opening speed depends upon the initial static stress intensity

factor and the crack velocity. From simple theory one might expect that the crack face opening

velocity increases by as much as 5 times when the crack speed increases from 600 m/s to 900

m/s.[ 17] This suffices to explain the difference in the temperature fields in Figures 1 and 7.



4. Conclusions

From the asymptotic analysis of the traveling point source solution of the hyperbolic heat

conduction equation, it is clear that, for crack propagation in metals when the crack speed is

either lower or higher than the material heat propagation speed, the difference between hyperbolic

heat conduction and parabolic heat conduction is negligible (See Figures 6 and Figure 7). As the

factor 0 = &6/2a gets large, (i, -,. W0) for a crack propagating in 4340) solutions for a traveling

point source in a hyperbolic or parabolic material converge to the same result. This end result

is insensitive to changes in the thermal mach number, .l, and is very similar to the solution for

a traveling source zone in an adiabatic material.

The temperature field in Figure I exhibits quasi-adiabatic heat conduction behavior when

it = 600 m/s. Contours of constant temperature extend from the crack tip to Ix, I = -oo nearly

parallel to the crack faces before curving in to meet the negative .r1 axis. A region of nearly

constant radial temperature gradient is observed ahead of the crack tip. The temperature field

greatly resembles the solution for adiabatic conditions due to the high crack velocity, t, small

heat production zone, 6, and low thermal diffusivity, n, of 4340 steel.

When it = 900 m/s the temperature field does not show behavior that is predicted by

parabolic or hyperbolic heat conduction. It is understood that this difference is due to opening

of the crack faces behind the crack tip.J31 Thus, no evidence of hyperbolic heat conduction is

observed, and it is concluded that the traveling point source shows little promise as an experi-

mental method for the investigation of the hyperbolic heat conduction effect. A feasible source

zone size combined with the normal range of material parameters for engineering materials con-

sistently leads to near adiabatic conditions around the source zone unless a very low thermal

wave speed is expected (-- I m/s).
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List of Figures
Figure 1 Temperature fields around a crack propagating in oil-quenched 4340

steel at two different velocities. The maximum temperature at higher
velocities is 450*C1 II while the maximum temperature at 600 m/s is
300-C[3].

Figure 2 Experimental measurements and theoretical approximations to the plas-
tic work zone on the surface of oil-quenched 4340 steel during dy-
namic fracture. At 900 m/s the work zone is smaller[1] than the work
zone at 600 m/s.131 For each experiment the aspect ratio is the same,
f = .05, but the size, , differs. At 900 m/s 6 = 5.0; at 600 m/s
6 = 7.5.(See section 2.3.)

Figure 3 The temperature field due to the approximate plastic work zone shown
in Figure 2 for adiabatic conditions. The box indicates the region
of non-zero plastic work. (See section 2.3.) Good qualitative and
quantitative agreement with the experimental results for 6 = 600mn/s
are seen. The predicted temperature rise for (I = 900m/s is also good,
however, the shape of the field does not agree with that measured
when (* = 900m/.,.(See Figure 1.)

Figure 4 The normalized temperature field for a propagating source zone with
v, = .01 and 112 E [0..3. 9j. (S,.e Eqs (2.22a) and (2.22b).) Note
that the existence of a temperature drop is exhibited for Ml2 E [.5, .9]
and that the temperature field becomes more localized around the

source zone with increasing .1;.

Figure 5 The normalized temperature field for a propagating source zone with
_= 1 and A 2 E [0.....9]. There exist no temperature drops as for

v, = .01 in Figure 4., however, the temperature field becomes increas-
ingly localized around the heat source as the thermal mach number,
-I, increases leading to higher temperature rises at the maximum.

Figure 6 The normalized temperature field for a propagating source zone with
v, = 100 and 312 E [0..9]. The two fields are virtually indistinguish-
able. No dependence upon 312 is seen.

Figure 7 The theoretical temperature fields for approximate experimental con-
ditions when it= 9(X) m/s and 600 m/s. Good agreement is seen in
the predicted maximum temperature at the crack tip, however some
discrepancies occur between the general shape of the field in this fig-
ure and the temperature fields shown in Figure 1. (ii, = 10', 6 = 7.5
mm for 0 = 600 m/s and e = 3 mm for it = 900 m/s.)

Figure 8 The theoretical temperature field when 312 = 104 and V' = 103 re-
sembles that in Fig I when i = 900 m/s. This resemblance is coin-
cidental, however, because the large value of MI indicates thermally
supersonic behavior should also be expected when i = 600 m/s and
no such behavior is observed.



List of Symbols
q heat flux vector
k thermal conductivity
T temperature rise
S heat source function
p density
cp heat capacity
a k/pcp
v thermal wave speed
a crack tip velocity
z stationary coordinates system

coordinates translating with the crack tip
Al thermal mach number, itll

K 6/2n /I- . 21
f aspect ratio of the heat source zone
6 size of heat source zone
Q magnitude of heat source zone
x normalized coordinates translating with the crack tip
V, 66/2o
0 pcPTIQ6
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